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WARM-UP

In this talk I want to consider 2nd-order PDE given by one equation for a single function of
n+ 1 variables1. That is, I am interested in functions

u : Rn+1 −→ R
that satisfy a differential equation

(1) F (x, u, ∂u, ∂2u) = 0.

I want to describe how to consider this differential equation as a geometric object, but first I
recall several facts.

First, the function u can be considered as a section of the trivial line bundle (the space of
“zero-jets”) over Rn+1,

J0(Rn+1,R) ∼= Rn+1×R

Rn+1

u

Furthermore, there is a bundle of 2-jets of J2(Rn+1, R), and a natural way to lift u to a section
of the larger bundle, the 2-jet lift of u, denoted j2(u):

J2(Rn+1,R)

J0(Rn+1,R)

Rn+1

u
j2(u)

The manifold J2(Rn+1,R) is isomorphic to

Rn+1×R×Rn+1× Sym2(Rn+1),

which can be given coordinates
(xa, u, pa, pab).

Now, a generic section of J2(Rn+1,R) will not be the 2-jet lift of any function, but there is a
simple geometric test to determine which sections are. First, define the 1-forms θ∅, θa by

θ∅ = du− pa dxa

θa = dpa − pab dxb.
(Einstein summation convention assumed.) Then the following proposition is not difficult to
prove.

1I begin with n+ 1 independent variables because I will restrict attention to parabolic equations.
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Proposition 1. An n + 1 dimensional submanifold ι : Σ ↪→ J2(Rn+1,R) that submerses onto
Rn+1 (under the bundle map) is locally the graph of a section of J2(Rn+1,R). This section is
the 2-jet lift of a function u if and only if

ι∗θ∅ = ι∗θa = 0.

In other words, if the ideal
Calg = {θ∅, θa}

pulls back to zero on Σ, then Σ is (the graph of) the 2-jet lift of a function. Notice that if Calg
vanishes on Σ, then the larger ideal

C = {θ∅, θa, dθ∅, dθa}
does too2. It turns out to be more useful to consider the second kind of ideal, which is differen-
tially closed.

This proposition can help us study the differential equation F . Indeed, F can be thought of
as a function on J2(Rn+1,R), and we may consider the zero locus of F ,

M = F−1(0).

The relation F is truly second order if and only if it varies non-trivially in its ‘second-derivative’
variables, which I assume to be true. This also ensures that the zero locus of F is a manifold. I
will furthermore assume that F is real analytic.

Let I denote the pullback of C to M . Then we have the following.

Corollary 1. An n+ 1-dimensional submanifold ι : Σ ↪→M such that Σ submerses onto Rn+1

satisfies the condition
ι∗ I = 0

if and only if Σ is locally the 2-jet graph of a function u that solves the differential equation (1).

This is clear, because the condition that Σ lie in M is a restatement of the fact that u satisfies
the equation F = 0.

EXTERIOR DIFFERENTIAL SYSTEMS

The previous section hopefully motivates the following definition.

Definition 1. An exterior differential system (M, I) is a smooth manifold M and a graded,
differentially closed ideal I in the ring of forms Ω•(M).

A submanifold ι : Σ ↪→M is an integral manifold of (M, I) if the pullback ι∗ I is identically
zero, or equivalently, if φ|TxΣ = 0 for all φ ∈ I and x ∈ Σ.

As in the example above, one should think of the pair (M, I) as the data of a PDE and its
integral manifolds as the graphs of solutions.

There is a very well defined theory of exterior differential systems, but except in special
cases, most of the results rely on (M, I) being real analytic3. This is perhaps disappointing
if one is concerned with more general questions of regularity. However, for questions about
things such as local invariants and conservation laws it seems sufficient to understand the real
analytic case.

Example 1. For a symplectic manifold M with symplectic form ω, the maximal integral man-
ifolds of (M, {ω}) are the Lagrangian submanifolds.

Likewise, for a contact manifold M with contact form θ, the maximal integral manifolds of
(M, {θ, dθ}) are the Legendrian submanifolds.

2E.g., because ι∗( dθ∅) = d(ι∗(θ∅)) = 0.
3The foundational tool is the Cauchy-Kowalevski theorem, which relies crucially on real analyticity.
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One upshot of the definition is that the expression of the PDE (1) as an EDS is independent
of a choice of coordinates. More precisely, exterior differential systems form a category, where
the most important morphisms are given by the following.

Definition 2. An equivalence of exterior differential systems (M, I) and (M ′, I ′) is a diffeo-
morphism f : M →M ′ for which f ∗ I ′ = I.

The coordinate indepence of exterior differential systems is evinced by the following dia-
gram:

(2)

F (xa, u, pa, pab) (M, I)

F̃ (x̃a, ũ, p̃a, p̃ab) (M̃, Ĩ)

EDS ‘functor’

Change of Variables EDS equivalence

EDS ‘functor’

One immediate consequence of definition 2 is that an EDS equivalence between M and M̃
will push integral manifolds of M forward to integral manifolds of M̃ . In other words, an EDS
equivalence preserves the structure of solutions, just as a change of variables does.

In the theory of PDE it is natural to ask the following.

Question 1. Are two given partial differential equations F and F̃ related by a change of vari-
ables?

By the ‘functoriality’ of diagram 2, this leads naturally to the following question, whose
answer would essentially resolve the previous question.

Question 2. When are two given exterior differential systems related by an EDS equivalence?

Fortunately, the latter question can be studied with geometric tools.

GEOMETRY OF EXTERIOR DIFFERENTIAL SYSTEMS

An exterior differential system (M, I) is a smooth manifold with extra structure—the ideal
I, which contains the information of solutions. Many classical geometries are characterized
as manifolds with extra structure, such as Riemannian geometry, complex geometry, and sym-
plectic geometry. From this perspective, EDS equivalences are exactly the geometry-preserving
maps, just like isometries, bi-holomorphisms, and symplectomorphism in their respective ge-
ometries.

Cartan’s method of equivalence is a classical tool that is useful in studying geometric prob-
lems such as Question 2. Cartan’s method concerns differential geometries that areG-structural,
i.e. the geometry can be described by a G-principal sub-bundle of the coframe bundle. For ex-
ample, it is a nice exercise to check that a metric g is equivalent to anO(n)-principal sub-bundle
of the coframe bundle—the space of orthonormal coframes. More generally, any geometry that
can be defined by sections of the total tensor bundle on TM (satisfying a constant stabilizer
assumption) will be G-structural, with G given by the pointwise stabilizer of these sections.
This encompasses most classical geometries, as well as the geometry defined by (M, I).

In principal, given a class of G-structures, one can work through the method of equivalence
and determine all of the local invariants of G-geometries. Furthermore, the calculation is es-
sentially a homological one, depending only on the Lie algebra ofG (its Spencer cohomology).
The following table lists some examples:
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Geometry Local invariants
Riemannian Riemannian curvature tensor
Almost Complex Nijenhuis tensor
Conformal Weyl tensor, Cotton tensor
EDS associated to 2nd-order PDE Principal symbol, ?????

As noted in the table, the primary invariant one finds for 2nd-order EDS is the essentially
the principal symbol4. What one finds is a Sym2(Rn+1)-bundle E over M , and the principal
symbol is a (local) section σ of this bundle. I remark that, in this setup, the principal symbol is
defined at each point of M , even for non-linear equations. This is because each point p of M
is a 2-jet, and σ(p) is the invariant expression of the classical symbol of the linearization of F
at p. In fact, the section σ depends on a choice of coframe on M , and the real invariant is the
signature of σ(p) at each point p.

Typically one makes a choice here, corresponding to the standard division of 2nd-order PDE
as elliptic, hyperbolic, parabolic, etc. So, if the section σ is everywhere positive definite, then
M is elliptic in nature. If it has signature (1, n) then M is hyperbolic.

I restrict attention to those 2nd-order systems that are parabolic, so that the symbol σ has
constant signature (0, n). These systems can be given by a definition adapted to their geometry:

Definition 3. A (weakly) parabolic system in n + 1 variables is a 2n + 2 + (n + 1)(n +
2)/2 dimensional5 exterior differential system (M, I) such that any point has a neighborhood
equipped with a spanning set of 1-forms

(3) θ∅, θa, ω
a, πab a, b = 0, . . . , n

that satisfy:

(1) The forms θ∅, θa generate I as a differential ideal.
(2) The structure equations

dθ∅ ≡ −θa ∧ωa (mod θ∅)

dθa ≡ −πab ∧ωb (mod θ∅, θb) .

(3) The symbol relations πab = πba and
n∑

i=1

πii ≡ θ0 (mod θ∅, θi, ωa) .

The given coframing is adapted to the parabolic symbol, and is called admissable.

These exterior differential systems model scalar, parabolic, 2nd-order PDE—any small enough
neighborhood can be given ‘jet’ coordinates so that the given coframing arises from the pro-
cess described in the warm-up. However, there are natural parabolic systems (such as mean
curvature flow) that cannot be written globally in the jets formulation.

The first two conditions exhibit (M, I) as a 2nd-order equation. The third condition shows
that the principal symbol is everywhere parabolic and that the sub-principal symbol is non-
trivial and that the chosen coframing has been adapted to the symbol. In particular, it rules

4This is to be expected: the principal symbol is invariant under changes of coordinates, and used classically to
categorize 2nd-order PDE.

5This is 1 less than the dimension of J2(Rn+1,R). In fact, a parabolic system can locally be defined by a
hypersurface in J2(Rn+1,R), as in the warmup.
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out equations whose principal and sub-principal symbol have a kernel. For example, the 2-
dimensional Laplace equation with 1 free parameter,

(4)
(
∂2

∂x 2
1

+
∂2

∂x 2
2

)
u(x0, x1, x2) = x0,

has parabolic principal symbol, but behaves like a family of elliptic equations. Its associated
parabolic system does not satisfy condition 3.

Example 2. Consider the canonical example of a parabolic differential equation, the heat equa-
tion

∂u

∂x0
=

n∑
i=1

∂2u

∂xi∂xi
.

The corresponding exterior differential systemM is given by the submanifold {p0 =
∑n

i=1 pii}
in J2(Rn+1,R) and the ideal

I = { du− paωa, dpa − pabωb}.
The coframing

θ∅ = du− paωa πab = dpab

θa = dpa − pabωb ωa = dxa

restricts to an admissable coframing of M , making it into a parabolic system.
Note that condition 3 follows immediately from

dp0 =
n∑

i=1

dpii.

In fact, the stronger statement

(5)
n∑

i=1

πii ≡ θ0 (mod ωa)

holds in this case.

Returning to the definition of a parabolic system, observe that an admissable coframing is not
unique. In fact, there is a Lie sub-group G of GL(R2n+2+(n+1)(n+2)/2) so that any two adapted
coframes at each point differ by multiplication with an element g ∈ G. More precisely, each
coframing (θ∅, θa, ω

a, πab) defines for each point p in its domain a linear map

u : TpM → R2n+2+(n+1)(n+2)/2,

and the diagram

R2n+2+(n+1)(n+2)/2

TpM

R2n+2+(n+1)(n+2)/2

g

u

ũ

commutes. The group G (which can of course be described explicitly) is the space of pointwise
symmetries of the geometry defined by a parabolic system. Parabolic systems are equivalent to
certain G-structures with this group G.
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One can continue to apply Cartan’s method, now to the geometry of parabolic systems.
The upshot is 2 new classes of local invariants, the Monge-Ampère invariants and the Goursat
invariants.

The Monge-Ampère invariants measure how far a second order equation is from being
Monge-Ampère, where, by definition, a 2nd-order Monge-Ampère equation is one of the form

F (xa, u, pa, pab) =
∑
|I|=|J |

AI,J(xa, u, pa)HI,J = 0,

where the I, J range over subsets of {0, . . . , n} and HI,J stands for the (I, J) minor determi-
nant of the hessian matrix

H =

(
∂2u

∂xa∂xb

)
.

In my thesis I prove the following theorem in arbitrary dimension, which was previously known
by Bryant-Griffiths [1] for n+ 1 = 2 variables and Clelland [2] for n+ 1 = 3 variables.

Theorem 1 (McMillan). Let F be a 2nd-order parabolic PDE and (M, I) its associated par-
abolic system. If the Monge-Ampère invariants of M vanish identically, then F is a Monge-
Ampère equation.

On the other hand, the Goursat invariants measures how far a parabolic system is from being
evolutionary, as in the following theorem.

Theorem 2 (McMillan). Let F be a 2nd-order parabolic PDE and (M, I) its associated par-
abolic system. The Goursat invariants vanish (which requires that certain Monge-Ampère in-
variants also vanish) if and only if F can be written in evolutionary form:

F (xa, u, pa, pab) = p0 − F1(xa, u, pi, pij)

where i, j = 1 . . . n.

The proof furthermore gives explicit coordinates for which F is in this evolutionary form.
Indeed, if the Goursat invariants vanish, then there is an admissable coframing of the form (3)
so that ω0 is closed. Locally, there is a function t so that ω0 = dt, and this function provides
the ‘time’ foliation that defines the evolutionary form of F .

One can now proceed to define more refined invariants, which depend on the values of the
Monge-Ampère and Goursat invariants. But the Monge-Ampère and Goursat invariants are
already enough to begin to get a good understanding of the behavior of conservation laws of
parabolic systems, which I turn to now.

THE CONSERVATION LAWS OF PARABOLIC SYSTEMS

First, I recall the general definition of a 0th-order conservation law for an exterior differential
system.

Definition 4. Given an exterior differential system (M, I) whose maximal integral manifolds
are n+ 1-dimensional, a 0th-order conservation law is an n-form Ψ for which dΨ ∈ I.

The idea is that the form dΨ will vanish on any integral manifold Σ, so by Stokes theorem∫
∂Σ

Ψ =

∫
Σ

dΨ = 0.

For example, consider the heat equation defined above. It is not difficult to check, using equa-
tion (5), that the form

(6) Ψ = piω(i) − uω(0)
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(where ω(a) = ω0∧ . . . ω̂a . . . ∧ωn is the ommitted index notation) is a non-trivial conservation
law.

It is clear from this formulation that if Ψ is closed, or if it is already in I, then it doesn’t
define an interesting conservation law, so the space of non-trivial 0th-order conservation laws is
defined to be the middle homology of the sequence

Ωn−1(M)/ I d−−→ Ωn(M)/ I d−−→ Ωn+1(M)/ I .
Although this is the geometrically useful definition of conservation laws, there is a more com-
putationally useful way to define them. In fact, this sequence fits into the side of a spectral
sequence. This spectral sequence defines an isomorphism between the space of conservation
laws and another vector space, the space of differentiated conservation laws. This latter space
can be computed using the spectral sequence. Instead of describing the general result, I describe
the space of differentiated conservation laws for parabolic systems below.

Before stating the theorem, one more technical point: strictly speaking, the conservation
laws defined here only depend on few derivatives of solutions. For example, parabolic systems
are modeled on subsets of the space of 2-jets, so any conservation law can depend on at most
second derivatives of solutions. To consider all conservation laws, which depend on derivatives
of arbitrarily high order, we use a formal process (called prolongation) that replaces the EDS
(M, I) with a larger EDS that has the same solutions, but also sees derivatives of all order. That
is, there is an EDS (M (∞), I(∞)) equipped with a submersion

π : M (∞) →M

so that any integral manifold Σ of M has a unique lifting to an integral manifold in M (∞).
Generally M (∞) will be an infinite dimensional manifold. Then the space of conservation laws
on M (∞) gives the space of conservation laws of all order on M .

For example, a parabolic system that comes embedded into J2(Rn+1,R) will be replaced by
a new one equipped with an embedding into the infinite jet-space J∞(Rn+1,R).

Definition 5. The space of all conservation laws on an EDS M is the space of 0th-order con-
servation laws on M (∞).

Theorem 3 (McMillan). Let Φ be a differentiated conservation law of a paraobolic system
(M, I). There is a function A on M (∞) and an n-form ψA so that

Φ ≡ A
n∑

i=1

θi ∧ω(i)

(
mod θ∅,Λ2 I

)
.

The function A satisfies an auxilliary differential equation determined by the local invariants
of M .

Example 3. The differentiated version of the heat equation conservation law given in Equation
(6) is given by

Φ = dΨ = θi ∧ω(i) − θ∅ ∧ω(0).

From the theorem, the problem of classifying all of the conservation laws of a given parabolic
systems comes down to solving a differential equation on M (∞). A priori, this is an infinite
dimensional problem because M (∞) is infinite dimensional. However, the following theorem
shows that the problem is finite for parabolic Monge-Ampère systems.

Theorem 4 (McMillan). Let (M, I) be a parabolic Monge-Ampère system and Φ a differen-
tiated conservation law as in Theorem 3. Then the function A is the pull back along π of a
function on M .
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In other words, for a parabolic Monge-Ampère system, the conservation laws are determined
by solutions to a PDE defined on M , a finite dimensional manifold.

This in particular rules out any behavior like the KdV hierarchy of conservation laws: all
conservation laws of MA parabolic systems occur at 0th order.
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